

It's A Gritty Situation: Tackling Grit at Village Creek Water Reclamation Facility

January 29, 2021 TACWA Meeting Amy Robinson, PE, BCEE, CDM Smith

Presentation Overview

- Village Creek Water Reclamation Facility (VCWRF)
- Grit Characterization and Profiling
- Grit Facility Location Strategy
- Grit Technology Evaluation
- Physical Modeling

FORT WORTH_®

Design 3D Model

FORT WORTH.

- "In the middle of no-where"
- Initial Capacity 5 MGD to serve East Fort Worth
- Built to replace Riverside WWTP
- Population of Fort Worth 350,000

- Now serves around 1.2 million people including 880,000 Fort Worth residents, 23 communities in Tarrant and Johnson Counties
- Permitted for 166 mgd AADF and 369 mgd 2-hr peak
- Conventional WWTP

FORT WORTH_®

- No influent grit removal process
- Primary sludge de-gritting system

Grit Sampling & Characterization Studies

- September 2012 influent & primary sludge
- June 2013 influent & Salsnes Filter
- October 2015 Digesters

FORT WORTH_®

- April-June 2016 existing primary sludge de-gritting system and slurry cup pilot
- April 2017 Aeration Basin 6
- May 2017 Sludge Holding Tank at Solids Dewatering Facility
- September 2017 influent and primary sludge

Grit Characterization and Profiling

FORT WORTH®

	Average Grit Particle Distribution				
Particle Size	≤105µm	≤150µm	≤297µm		
Influent Box E	5.3%	13.5%	34.4%		
Influent Box F1	9.3%	21.3%	50.0%		
Influent Box C/Bar Screen 3	9.1%	23.0%	53.9%		
Average	7.9% 19.3% 46.1%				
Predicted Removal Efficiency of System Designed for Particular SES'					

105µm	150µm	297µm
96%	78%	31%

1. SES is Sand Equivalent Size – sand particle size (microns) having same settling velocity as the selected grit particle

Grit Characterization and Profiling

FORT WORTH.

Location	Average Grit Concentration		
	lb/MG	mg/L	
Influent Box C	67	8	
Bar Screen 3	38	5	
Influent Box F1	396	48	
Influent Box E	115	14	
Average	186	22	

FORT WORTH®

Existing System

FORT WORTH.

System Design for 105 Micron Removal

Flow Scenario	Total Plant Flow	HRC Flow	Grit Facility Design Flow	Performance Cutpoint
Design AADF, mgd	166	0	166	≥105µm
2030 AADF, mgd	189	0	189	≥105µm
SPTC, mgd	365	110	255	≥150µm
PHF, mgd	494	110	384	≥212µm

AADF – annual average daily flow; PHF – peak hour flow

FORT WORTH.

SPTC - sustainable peak treatment capacity (extended 3-day peak treatment)

Grit Facility Location Strategy

 Address all flow 75-80% West 20-25% South

FORT WORTH®

- South flow screening (BS3)
- Utilize existing Headworks screening capacity
- Collection system impacts

Grit Facility Location - Option 1

- Combined Grit Facility for West and South flow
- New Screen Facility for South flow
- Screening and grit handling in 2 locations
- Requires significant collection system improvements for south flow

Grit Facility Location - Option 2

- Combined Grit Facility for West and South flow
- New Screen Facility for South flow
- 124 MGD intermittent Peak Flow Lift Station for South flow to minimize collection system improvements

FORT WORTH®

Grit Facility Location - Option 3

- Combined Grit Facility for West and South flow
- Upgrade existing Headworks Facility
- Full service 124 MGD Lift Station for South Flow

Life Cycle Cost Analysis

	Grit Facility Location 1	Grit Facility Location 2	Grit Facility Location 3
Capital Cost	\$46,900,000	\$44,440,000	\$35,200,000
Operations and Maintenance Cost	\$14,100,000	\$18,300,000	\$32,300,000
Total Present Worth	\$61,000,000	\$62,740,000	\$67,500,000
• Life Cycle in years = 20			

- Discount rate = 5%
- Inflation rate = 2%

FORT WORTH®

• P/A factor = 14.96

- Grit Separation
- Grit Pumping

FORT WORTH_®

- Grit Processing
- Recommendation \rightarrow Separate each component for evaluation

Grit Technology Evaluation Criteria

- Independent performance testing acceptance
- Installations for fine grit removal (105-micron)
- Operation and maintenance perspective
- Life cycle cost

FORT WORTH_®

Grit Separation Evaluation Summary

FORT WORTH®

Criteria	Mechanically Induced Forced Vortex	Stacked Tray Forced Vortex
Performance	Average	Good
Head Loss	Similar Under Optimal Design Conditions	Similar Under Optimal Design Conditions
Footprint (single unit)	Large	Small
Screening Required	Yes	Yes
Maintenance	Medium	Low
Installations of Similar Sizo	Many	Few
	(Fewer with V-force baffle)	(140 total, 3+ of similar size)
Other	Long Approach Channels	Sole Source

Stacked Tray Forced Vortex Sizing

Maximum Flow for Single 12 Tray HeadCell [®] (Mgal/d)					
		Cutpoint Performance			
Tray Diameter	Area ft² (m²)	106 µm	150 µm	212 µm	
4' (1.2 m)	150 ft ² (13.9 m ²)	2.6	4.0	5.1	
6' (1.8 m)	340 ft ² (31.6 m ²)	5.8	9.0	11.5	
9' (2.7 m)	763 ft ² (70.9 m ²)	13.0	20.2	26.0	
12' (3.7 m)	1356 ft ² (125.9 m ²)	23.1	36.0	46.1	

FORT WORTH.

166 MGD Grit Facility Flow / 23.1 MGD/ Unit Capacity \rightarrow 8 Units 255 MGD Grit Facility Flow / 23.1 MGD/ Unit Capacity = \rightarrow 12 Units

Cutpoint Performance	Loading Rate		
	gpm/ft²	L/m²	
75 µm	6.9	4.7	
106 µm	11.8	8.0	
125 µm	15.6	10.6	
150 µm	18.4	12.5	
175 µm	21.1	14.3	
212 µm	23.6	16.0	

Mechanically Induced Forced Vortex Sizing

Peak Hour Flow, MGD	Diameter, ft.	Chamber Depth, ft.	Hopper Diameter, ft.	Hopper Depth, ft.	Calculated Detention Time, sec.
1	6	3.67	3	5	67
2.5	7	4.5	3	5	45
4	8	4.67	3	5	38
7	10	5	3	5.5	36
12	12	6.67	5	6.67	41
20	16	7.5	5	6.83	49
30	18	9.17	5	7	50
50	20	11.5	5	7	47
70	24	12.67	6	8	53
100	32	12.67	8	10	66

- Does not use particle settling theory
- Particle separation depends on liquid flow pattern creating forces acting in tangential, vertical, and radial directions.
 - Particle Force Balance Equation (i.e. drag, centrifugal, buoyancy)
 - Particle Diameter Equation to determine particle diameter cutoff that will separate from fluid flow
 - CFD analysis to determine grit path through unit

Mechanically Induced Forced Vortex Sizing

Manufacturer	Unit Size	No. of Units Per Manufacturer	No. of Units (1.5 SF)	No. of Units (2 SF)	No. of Units (Settling Theory)
Smith & Loveless	70.0 MGD	4	6	8	34*
John Meunier	76.8 MGD	5	8	10	34*

*Based on grit settling velocity of 105 micron particle size 11.8 gpm/sf

FORT WORTH.

Grit Pumping

Pump Configuration

Flooded Suction

Top-Mounted Self-Priming

• Pump Type – Recessed Impeller

Grit Pumping – Other Considerations

- Simple pipe alignment
- Minimize bends

FORT WORTH.

- Long radius bends
- Proper flushing connections and cleanouts
- Pump Seals

Grit Processing Evaluation Summary

FORT WORTH.

Criteria	Cyclone/Classifier	SlurryCup/GritSnail	Cone Washer	
Claimed Grit Capture (best case)	95% of Grit ≥ 100µm	95% of Grit ≥ 75µm	95% of Grit ≥ 100µm	
Washed Grit Water Content	≤ 25%	≤ 40%	≤ 10%	
Washed Grit Organic Content	≤ 50%	≤ 15%	≤ 5%	
Hydraulic Capacity	High	Medium	Medium	
Manufacturers	Many	One	One (possibly two)	
Maintenance	High	High	Low	

Grit Removal System Direct Cost Summary

Component	Mechanically Induced Forced Vortex (8 units)	Stacked Tray Vortex (8 units) 105 micron @ 166 mgd	Stacked Tray Forced Vortex (12 units) 105 micron @ 255 mgd
Grit Separation Equipment	\$680,000	\$1,500,000	\$2,250,000
Grit Separation Tanks (concrete)	\$1,300,000	\$1,100,000	\$1,500,000
Grit Pumps	\$480,000	\$400,000	\$550,000
Grit Processing	\$1,200,000	\$1,100,000	\$1,600,000
Other Cost (gates, piping, HVAC, etc.)	\$1,200,000	\$1,200,000	\$1,300,000
Grit Building	\$460,000	\$460,000	\$460,000
SUBTOTAL Direct Cost	\$5,360,000	\$5, 760,000	\$7,660,000
Cost per Unit	\$612,500	\$662,500	\$600,000

Notes:

FORT WORTH_®

1. Cost presented above are +/- 30% at this 15% conceptual level of estimation.

2. Cost presented are direct cost only. Bonds, insurance, and OH&P are not included.

3. Cost presented related to grit separation, pumping and processing only and does not include overall project costs such as yard piping, site work, screening, lift station cost, etc.

Design Criteria

FORT WORTH_®

- Grit Separation: stacked tray forced vortex units
 - 95% removal efficiency 105µm and greater
- Grit Pumping: flooded suction recessed impeller pumps
- Grit Processing: cone washer/screw conveyors
 - 95% removal efficiency
 - < 10% water content</p>
 - < 5% organic content</p>

FORT WORTH®

Physical Modeling

Physical Model Overview

Influent Splitter Box

FORT WORTH®

Physical Modeling

Headcell Influent Channel Isolation Gates

Headcell Influent Channel

Physical Modeling

Influent Splitter Box Modification

Removed Influent Channel Gates

Influent Splitter Box Modifications

FORT WORTH.

Influent Splitter Box Modifications

FORT WORTH.

Influent Splitter Box Modification Plan View

31

Physical Modeling

FORT WORTH®

Weir Widths Equal For All Head Cells (Submerged Flow)

Influent Diversion Box WSE (need to add 12-in for Headcell (475.50)

Issues: 1. Submerged Weirs and Influent 2. Splitter Box WSE exceed goal of 474.25

FORT WORTH®

Physical Modeling

Revised S-Bend in South Channel

Tapered Wall in North Influent Channel

Physical Modeling

FORT WORTH.

Headcell Weir Final Setting at 471.50

Tapered Wall in North Influent Channel

FORT WORTH.

VC Grit Facility 3D Model

FORT WORTH®

Thank You

Amy Robinson, P.E., BCEE CDM Smith Inc. robinsonar@cdmsmith.com

