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Innovations in Artificial Intelligence 
for Sewer Asset Management



Sewer O&M is a $50B/yr Government Expenditure
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 800,000 miles of public 
sewer

 500,000 miles of private 
sewers

 Earth-to-Moon is 
238,900 miles

 CCTV’ing even 1% of this 
produces 38,133 hours 
(1,588 days) 
worth of video
…which must be viewed 
by a human being

https://www.usmayors.org/2018/01/10/local-government-investment-in-water-and-sewer-2000-2015/



Infrastructure Renewal is $105B Behind Schedule 
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Funding

Time/Personnel

Technical Deficiency

Lack of Strategy

Impediments to Proactive Approach

Source: 2017 WRF Study on Proactive Cond Assessment and Renewal



The Status Quo for Sewer CCTV Condition Assessment Cannot Keep Up
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Impediments to Proactive Approach

 Most cities conduct regular sewer 
CCTV inspections but still find:
− Personnel don’t have time available 

to focus on defect coding
− Methods for defect coding are 

technically deficient

 In the life span of 1,000LF of sewer 
video: 2-6 hours (30-40% of the 
total acquisition time) is spent 
doing defect coding 

Funding

Time/Personnel

Technical Deficiency

Lack of Strategy



What the CCTV Pipe Inspector has to worry about…
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 Mobilization
 Finding the manholes
 Traffic control
 Setup
 Cleaning
 Inspection
 Defect coding
 Robot repairs
 Demobilization
 Emergency communications
 Data transfer

30-40% of the 
total time is spent 
coding…



Prior efforts have improved the coding process, but not conquered it
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Prior efforts have improved the coding process, but not conquered it
 Training standards have reduced bias, but the majority of data is still heavily skewed
 Image mapping software programs worked in theory, but were overwhelmed 
 Multi-sensor inspection quantifies defects, but is time consuming and 

diameter limited 
 Most legacy sewer CCTV data will be 352x240 pix .MPG or .AVI files

55%29%

16%

Muller, 2006

Different
condition
classification

Same
classification,
different protocol

Same
classification,
same protocol



Automated Sewer CCTV 
Defect Coding

Case Study: Jacobs/Hitachi  - AI Defect Discovery & Coding 
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Accuracy Expectations
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99%  A+ ……………  9%

90%  A  …………… 43%

80%  B ……………  32%

70%  C ……………  13%

60%  D  ……………   4%

What level of sewer CCTV 
defect coding accuracy will 
the industry expect from a 
machine? 

(consider that it would be 
consistent and complete)

Percent of
Respondents

Minimum 
Accuracy 
Expectation

52%

84%



“Under the Hood” Prototype Results: Individual Pipe Graph
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Human 
Observations

Machine 
Prediction



“Under the Hood” Prototype Results: Defect Count Groupings/Rating
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“Good” “Good”

“Fair”

“Poor”
“Fair”

“Poor”

Human Group Machine Group



How will this help?
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…machines do not fatigue…machines are not bias…machines never blink

More complete data Improved data consistency Faster data processing

Deployment alone is 
challenging enough…

…leave the data 
cataloguing task to 

the machines



AI refined 
Service Life Predictions 
and O&M Optimization
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Inefficiencies in Capital and Maintenance Planning have Big Impacts

Impediments to Proactive Approach

 Two largest obstacles to an 
effective proactive management 
strategy are:
− Insufficient Funding
− Lack of Strategy

 An 10% increase in accuracy 
of structural RUL forecasts 
and O&M maintenance 
frequencies can result in reduced 
lifecycle cost by up to 25%. 

Funding

Time/Personnel

Technical Deficiency

Lack of Strategy



Past predictive models have fallen short
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 Finding trends in a “sneeze” 
− Limited by human ability to see trends
− Simplified into simple X-Y plots correlating 

some measure of “condition” with some 
measure of “time”

 Other predictive models used tree logic 
with “if/then” statements - very time 
consuming even to map out a few variables

 All to answer questions like:
− When will the pipe fail?
− How will it fail?
− What is the best way to prevent failure?
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What Makes Machine Learning Different?
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Mathematical or Statistical Models Deep Neural Networks

Input Network Layers Outputy = mx + b 

VS

Pattern Recognition!  …The ability for machines to predict outcomes without being explicitly programmed.



“Under the Hood” Prototype Results: Predictions that Matched Test Data

17

Re-inspection Threshold

Pipe 12925
1st Inspection

Pipe 12925
2nd Inspection

Pipe 3819
2nd Inspection

Pipe 3819
1st Inspection

Pipe 7818
1st Inspection

Pipe 3819
2nd Inspection

Model predicted 
Score over time
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“Under the Hood” Prototype Results: Predictions that Missed Test Data
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Re-inspection Threshold
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Pipe 1182
2nd Inspection

Pipe 1182
1st Inspection



Output Accuracy Comparisons
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Conventional Decay Curves AI/ML Predictions

Pipe Age (years)
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Benefits
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→ Unique decay curves for each sewer pipe accounting for the unique combination of defects and asset 
info:
Example

 Old Way with Scores: Both get the same numeric "Score".  Which we then use in a traditional decay curve to 
predict the same RUL for both.

 New with AI: Different and specific RULs because the nature of their defects is different and the AI saw a 
stronger correlation to decay rate between one combination of defects over the other.

→ Can include parameters that before were not cost-effective to build into the analysis, but that can be 
very strong LOCALIZED predictors.
Example
 Installing contractor?  Specific manufacture of pipe?

Pipe 1: Clay, with many cracks 
and some grease

Pipe 2: Concrete, with single 
large fracture and some sand
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Wrap-Up
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 The basic Tasks with AI powered Object Detection & Recognition



Pipeline Defects 
(Cracks, Fractures, Broken, Deformed, Collapsed, Joint Offsets, Deposits Attached & Settled, Roots) 
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AI for AI 

THANKS FOR LISTENING…
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