

City of Austin Walnut Creek WWTP Expansion to 100 MGD

Presented by: Behnoush Yeganeh, PE

Delivering a better world

aecom.com

Agenda

- 1. Team Introduction
- 2. Project Overview and History
- 3. Facility Plan Considerations and Solutions
- 4. PER and Project Updates
- 5. Final Layout

Project Team

Walnut Creek WWTP Existing Conditions

- One of two municipal WWTPs in Austin
- Conventional activated sludge process
- Permitted for an ADF of 75 MGD and 165 P2HF
- Last expansion to 75 MGD in 2002
- Storm event in excess of 200 MGD
- Average flow exceeded 75% of 75 MGD in recent years due to population growth
- More stringent effluent requirements anticipated
- Significant industrial loads from semiconductor sector
- Miscellaneous limitations in several existing treatment facilities
- Restricted site

Existing Flow Diagram

Facility Plan

Delivering a better world

↔ aecom.com

Facility Plan

- 2018 2020
- Define Limitations and Solutions
 - Required Flow Capacity
 - Hydraulic Limitations
 - Influent Flow Characteristics
 - Effluent Requirements
 - Process Options
 - Disinfection

Flow Projection

AECOM

Hydraulic Limitations

Influent Design Criteria

Parameters	Design Concentration (mg/L)	MMA/AAD*	MDA/AAD*
BOD ₅	225	1.30	2.30
TSS	250	1.30	3.50
VSS	180	1.50	2.75
TKN	55	1.20	1.50
NH ₃ -N	47	1.20	2.00
TP	6.2	1.30	1.80

*AAD: Annual average daily loading MMA: Maximum monthly average daily loading MDA: Maximum daily loading

Ammonia in Influent

NH₃-N Concentration in an Industrial Stream

AECOM

Parameter	Daily Avg mg/L (lbs/day)	7-day Avg mg/L	Daily Max mg/L	Single Grab mg/L	Annual Average Mg/L
BOD ₅	10 (8,340)	15	25	35	5
TSS	15 (12,510)	25	40	60	5
NH ₃ -N	2 (1,668)	5	10	15	2
TP	1 (834)	2	4	6	1
TDS	Report	N/A	Report	N/A	Report
NO ₃ -N	Report	N/A	Report	N/A	Report
E. coli, CFU or MPN/100 ml	126	N/A	399	N/A	
Minimum DO	-	-	-	6.0	

.-----

Process Alternative Analysis

- 1. Integrated Fixed Film Activated Sludge (IFAS)
- 2. Modified Bardenpho
- 3. Aerobic Granular Sludge (Nereda®)
- 4. Ludzack-Ettinger (LE) Process with Chemical Phosphorus Removal (< 0.5 mg/L)
- 5. Modified LE Process (MLE) with Chemical Phosphorus Removal (< 0.5 mg/L)
- 6. Westbank Process LE Process with Biological Phosphorus Removal (< 0.5 mg/L)

Conventional Activated Sludge vs Granular Sludge (Courtesy of Aqua-Aerobics Systems, Inc.)

Comparison of Process Alternatives

Effluent Disinfection

• Continue to use chlorination for disinfection

Peak Wet Weather Treatment System

- 100 MGD of Peak Wet Weather Flow
- US EPA Region 6 position on wet weather flow treatment systems

Preliminary Engineering Phase

Delivering a better world

🔶 aecom.com

Updates

- January 2021 February 2022
- Touching every area of the plant
- Confirmed hydraulics
- Confirmed process selection and needs to accommodate Westbank process

Conversion to Westbank

Maximized treatment capacity and use of space

Updates

- Updates on EPA Region 6 position on side-stream treatment
- Changes to effluent disinfection
- Estimated Construction Cost of \$600M \$700M

Proposed Flow Diagram

Proposed Site Layout

AECOM

Thank you!

Delivering a better world

↔ aecom.com