

The Woodlands Wastewater Consolidation Feasibility Study

Texas Association of Clean Water Agencies November 12, 2021

> SJRA SAN JACINTO RIVER AUTHORITY

Introductions

Daniel Hilderbrandt, PE

- Engineering Manager
- San Jacinto River Authority
- dhilderbrandt@sjra.net

David Munn, PE

- Group Manager
- Freese and Nichols, Inc.
- david.munn@freese.com

Agenda

Introduction

- Teams and Roles
- Background
- Goals
- Approach
 - Program Phasing
 - Phase I Tasks
 - Important Project Aspects
- Conclusion
 - Schedule
 - Key Take-aways
 - Q&A

Introduction

Background and Project Goals

Team and Roles

Existing System

Existing WWTF Assets

WWTF 1 - 46 Years Old 17 Acres, None Available Est. Start of Renewal 2021

WWTF 2 - 22 Years Old 25 Acres, 12.5 Available Est. Start of Renewal 2045

WWTF 3 - 17 Years Old 3 Acres, None Available Est. Start of Renewal 2055

Purpose

Provides a high-level overview to determine feasibility of consolidating two or more existing wastewater treatment plants or to retain the current system of operating and maintaining three separate facilities.

Driving Forces

Potential Ancillary Benefits

- Lower O&M costs
- Increased efficiency
- Improved effluent
- Reuse
- Bio-gas
- Sludge reuse
- Odor control
- Aesthetics

Approach

Program Phasing, Phase I Tasks, Unique Project Aspects

Project Process

Important Project Aspect: Feasibility Study

Our Project Goal is to Answer: Should we continue investing in a consolidation in the next phase?

 Right-sizing the level of analysis

Challenge

Best Practices

- Limit scope, necessary to answer the primary question
- Allowance for Owner directed services

Phase 1 - Feasibility Study Scope Overview

Task 1 – Coordination and Progress Review Meetings

- Engage stakeholders
- Understanding their definitions of success

• 14 stakeholder representatives

• Six workshops

Output

- Selection criteria
- Final alternative selection

Stakeholder Representatives

- Paul Brown MUD 47
- Bruce Cunningham MUD 6
- Scott Haynes MUD 36
- J. J. Hollie Woodlands Chamber
- Emil Jacobs MUD 386
- Dan Kolkhorst Howard Hughes Corp.
- Bob Leilich MUD 1

- Paul Martin MUD 67
- George Newman MUD 46
- Bruce Reiser Woodlands Township
- Don Sarich MUD 7
- Jim Stinson Woodlands Water
- Richard Stromatt MUD 60
- Ron Wilson Metro MUD
- Vacant MUD 39

Important Project Aspect: Aligning Stakeholder Goals and Visions

Challenge

Best Practices

- Workshops
- Establish rules of engagement
- Mission statement
- Level of service

Stakeholder Coordination Meetings

Project Kickoff

Evaluation Criteria Weighting

Condition Assessment

Alternatives Shortlist

Initial Alternatives Scoring

Final Alternative Selection

Task 2 - Assess Infrastructure and Evaluate Flows

Goal

 Establish existing infrastructure and future flow conditions

Approach

Combine

existing models

 Risk-based assessment Output • Basic flow and condition criteria on which to base alternatives

- Build upon existing work
- Review of recently updated data
- Utilize existing risk-based assessment (RBA) scores
- Multi-discipline, visual field inspection of WWTFs 1 and 2

Condition Assessment

Hydraulic Model Update

SSTAR Program Hydraulic Model - Flow Monitoring Data - Wet Weather Hydrology Model Update **Optimization Study Model** - Spatially applied 2027 SFDUEs

Updated Model

- Combines best wet-weather and dry-weather features of two existing models
- Incorporates NOAA Atlas 14 data
- Updates design storm hyetographs

Task 3 – Define Alternatives

Define alternatives that meet stakeholders' level of service

Analysis of Alternative Sites

- Property Size
- TPDES Limits
- Wetlands
- Flood plain
- Sensitive neighbors
- Conveyance length

Conveyance Options

- Alignments
- Conveyance Methods
 - Force Main
 - Gravity Sewer
- Construction Methods
 - Open Cut
 - Tunnels/Trenchless

FORCE MAINS

- Reduced Cover
- Reduced Pipe Diameter
- Utilize Existing
 Infrastructure

GRAVITY SEWER

- Reduced O&M Costs
- Lift Station
 Consolidation

OPEN CUT

- Lower linear foot costs
- Accessibility
- Traffic impacts

Tunnels

- Lift Station
 Consolidation
- Reduced Length
- Fewer Easements

Approach to Treatment Alternatives

BNR

- Determine consolidated design loads
- Confirm capacity of existing basins
- Determine additional capacity required
- Assume conventional treatment
- Contract includes contingency for owner directed services for additional analysis when necessary

Task 4 – Analyze Alternatives

listed alternatives

- Life-cycle cost analysis
- Weighted analysis of non-cost factors

 Preliminary scoring of alternatives based on best overall value

Important Project Aspect: Determining best overall value

 Best overall value may have higher capital cost

Best Practices

- Incorporate non-cost factors
- Develop Weighted Selection Criteria

Challenge

Available Resources for Alternatives Analysis

- Metrics
 - AWWA Utility Benchmarking
 - Envision[™]
- Tools
 - Triple Bottom Line Analysis
 - Envision[™] Rating System
- Technology
 - Metroquest
 - PowerBl

Triple Bottom Line

Consideration of Non-cost Factors

• Possible Factors:

- Noise and odor nuisance reduction
- Traffic disruptions
- Resiliency and reliability
- Ease of use and operation
- Effluent quality and adaption to future reuse

Weighted Decision Matrix - Example

Criteria	Weighting	Alternative 1	Alternative 2
Cost	0.5	8	6
Odor reduction	0.1	4	
Traffic Disruption	0.1	3	9
Resiliency	0.2		
Ease of Use	0.05	(())	6
Effluent Quality	0.05	0	8
Total Score		6.55	6.8

Task 5 – Report Development and Finalization

Project Process

Conclusion

Schedule, Key Take-aways, Q&A

Project Schedule

Task	2021				2022								2023				
	S	0	Ν	D	J	F	М	А	Μ	J	J	А	S	0	Ν	D	J
Stakeholder Meetings											[
Assess Infrastructure & Evaluate Flows																	
Define Alternatives																	
Analyze Alternatives																	
Draft Feasibility Study																	
Final Feasibility Study																	

Key Take-Aways

- 1. SJRA is committed to developing the most sustainable vision for serving The Woodlands
- 2. A phased approach will be used to "right-size" the level of analysis
- 3. Strategies may include:
 - Renewal in place and/or consolidation,
 - Traditional and/or innovative conveyance and treatment methods
- 4. Stakeholder engagement will be critical to success
- 5. >\$100M investment will be required to maintain service regardless of the alternative selected

