

Climatological Impact on Wet Weather Management and a Resiliency Plan for Wastewater Operations

Bill Gase, Wastewater Treatment Director, City of Garland

Michael Graves P.E. CP&Y

Pawan Gunjur P.E. CP&Y

January 28, 2022

Peak Flow Alternatives

City of Garland, WWTP Facilities

RC Transfer Pump Station to DC Firm Capacity = 60 mgd Rowlett Creek WWTP ADF = 24 mgd P2HF = 43 mgd

> Duck Creek WWTP ADF = 40 mgd P2HF = 72 mgd Peak Flow Basin = 50 MG

Project Background and Objectives

> Collection System Hydraulic Model

- Design Storm "5-year 6-hour" event (High intensity Short duration)
- Appropriate for collection system capacity assessment and planning

> Facilities Master Plan

- \odot Based on collection system peak hydraulic event
- o 50 MG existing Peak Flow Basin at DC-WWTP adequate for <u>short term</u> wet weather events.

> Treatment Plant Major Wet Weather Events

- \circ Extended wet weather event
- Multiple peaks during major wet weather events
- \odot Risk of compromising the treatment processes
- \circ Past Flooding events at RC WWTP

> Project Objectives

- Analyze historical data
- Determine major wet weather event (Design Storm) for treatment plant peak flows
- \odot Peak flow storage volumes and alternatives

Project Background and Objectives

Historical Rainfall Data

- > Climatological Data from NOAA.GOV
 - Station Name DAL FTW WSCMO AIRPORT, TX, US. # USW00003927
- > Rainfall data Analysis
 - DFW data from 1949 to 2019 (70-year data)
 - Minor Increasing Trend (Monthly Averages)

Historical Rainfall Data

> Rainfall data Analysis

 2010's showed severe wet weather conditions in 2018 and 2015 (for maximum daily, weekly, monthly and annual rainfalls)

Historical Rainfall Data

> WWTPs Rain Gauge Data

- Obtained 5-year rainfall data (2015 to 2019) from RC and DC WWTPs.
- High rainfalls observed in 2015 and 2018 (Similar to DFW Data)

Historical Rainfall Data and Analysis

> Wet Weather Event Analysis

• First and Second maximum DFW rainfall events (2018 and 2015, respectively)

> Collection System Hydraulic Model (Provided by the City)

- 5-year 6-hour design storm
- High Intensity short duration storm
- Appropriate for collection system assessment and planning
- o Volumes at Treatment Plants are much higher

- > Model Simulation for Transfer PS from RC to DC
 - Dry weather condition:
 3 4 mgd
 - Wet weather condition:
 10 20 mgd
 - Peak flow:36 mgd (3-pumps in service)

> DC-WWTP (DFW Rainfall Data)

- Projected daily flows comparable to historical data
- Flows differ due to model's RC transfer pump station assumptions

> Selected Events Simulation Results 0 2015 & 2018 DC-WWTP

> RC-WWTP (DFW Rainfall Data)

- o Projected daily flows are much lower than historical data
- Due to model's RC transfer pump station assumptions

> Selected Events Simulation Results
 o 2015 & 2018 RC-WWTP

> Simulation Analysis Summary

- \odot Historical DFW Rainfall data 2018 and 2015 Years were worst case 1 and 2 respectively.
- 6 Events were Chosen to Analyze (3 events from each year 2015 and 2018)
- Event 5 (9/19/18 to 10/3/18) was worst case
 - Projected Hydrographs did not match Plant's SCADA Data
 - However, Plant flow volumes were comparable to the projected flow volumes

an STV Company

Collection System Rain Gauge Data

> Garland Rain Gauge Data

City provided 10

 rain gauges data
 used during
 collection system
 modeling (2015
 and 2016)

Collection System Rain Gauge Data

> 2015 – Three Events Analyzed

Collection System Rain Gauge Data

> DC-WWTP : Event # 2, Simulation Results

- \odot Using average of the 10 gauges
- \circ Flow increase by 10 mgd

Collection System Rain Gauge Analysis

> Event # 2, Simulation Results (DC – WWTP)

 \odot High flows of 126 mgd for 3 days

o A second peak also predicted compared to DFW data

Collection System Rain Gauge Data Analysis

> RC-WWTP : Event # 2, Simulation Results

- \odot Using average of the 10 gauges
- \circ Flow increase by 3 mgd

Collection System Rain Gauge Data Analysis

> Event # 2, Simulation Results (RC – WWTP)

• High flows of 30 mgd

• A second peak also predicted compared to DFW data

Collection System Rain Gauge Data Analysis

> Simulation Analysis Summary

- Received Rain Gauge Data for Years 2015 and 2016.
- \circ 2015 Year Event 2 (10/21/15 to 11/11/15) data was selected for analysis.
 - Projected flows were higher than DFW rainfall data and matched marginally closer to Plant SCADA data in terms of overall volume

Major Wet Weather Events

	Rainfall Major Wet Weather Event (in/24hr)									DEW Rainfall	RG Average
Sustained	2015						2018	Duration	SCADA Data	Data	Rainfall Data
Rainfall	1		2		3		5		2015 Total Influent Volumes (MG)		
Condition		DWF		DWF		DWF					
	RG Data	Data	RG Data	Data	RG Data	Data	DFW Data	Event - 2	1,070	936	1,011
Peak Daily Average	4.43	2.2	5.71	3.55	2.95	3.45	5.85	(Oct 21 to Nov 10)			
Peak 2-d Average	3.11	1.88	3.59	3.07	2.73	3.08	4.08		2040 Tot	al Influent Volu	mes (MG)
Peak 3-d Average	2.08	1.55	2.87	2.51	2.05	2.38	2.78	Event - 2	N/A	1 413	1 503
Peak 7-d Average	1.08	1.26	1.24	1.08	1.02	1.15	1.32	(Oct 21 to Nov 10)	,,,	1,110	1,000

> Summary of Analysis

• The selected major wet weather event:

- Event 2: 10/21/15 to 11/11/15 (Approximately a 20-day event)
- Design Storm Frequency 10 to 25 years (Based on NOAA's point precipitation frequency estimates)

Peak Flow Storage Volumes

> Peak Flow Basin Storage Volume Requirements for Planning

- > Sustained Treatment Capacity:
 - \circ RC-WWTP = 43 mgd,
 - DC-WWTP = 72 mgd

Rainfall Data	Wet Weather Event	DC-WWTP Peak Flow Storage (MG)
DFW Data		
	Event - 2 (2015)	106
	Event - 5 (2018)	116
RG Average		
	Event - 2 (2015)	99
RG # 4, Maximum		
	Event - 2 (2015)	141

Peak Flows Alternatives

		STC. DC	DC - WWTP			
Alternatives	STC, RC WWTP (MGD)	WWTP (MGD)	Total Storage Volume Required (MG)	Additional Storage Volume Provided (MG)*		
1	43	72	100	50		
2	57	72	86	40		
3	68	72	83	35		
4	43	85	69	20		
5	57	85	52	0		
6	68	85	45	0		

*Existing 50 MG Storage Basin at DC-WWTP

Michael Graves P.E. <u>mgraves@cpyi.com</u> 817-662-1212 Pawan Gunjur P.E. pgunjur@cpyi.com 214-640-1728

Thank you!

Any questions?

