

Challenging today. Reinventing tomorrow.

Key Decisions in Dewatering Facility Design

September 22, 2023

Matt Berg, PE Matt.Berg@jacobs.com

Discussion Topics

- Sizing Decisions:
 - Flow/load projections
 - Design Condition
 - Level of redundancy
- Equipment and Technology:
 - Type of dewatering equipment
 - Polymer system elements
 - Type of conveyance
 - Level of automation
 - Odor Control
- Layout Considerations:
 - Safety/operator access
 - Storage and loadout
 - Building considerations
- Decision Analysis

What is the state of the practice?

Which technologies are worth considering?

How can someone approach making these decisions?

Sizing Decisions

Average	Maximum		
Annual in	30-Day in		
Start-up Year	Design Year	Units	Description
Biosolids Produ	ction:		
163,662	205,992	dry pounds/day	2045 Biosolids Production
3.6	3.4	% Solids	Feed Solids Concentration
Dewatering Equ	uipment Run T	imes:	
24	24	hr/d	
7	7	d/wk	
Dewatering Uni	its:		
140	160	gpm/unit	Hydraulic Loading
2,500	2,900	lbs/hr/unit	Solids Loading
2.7	3.0	units	# of Duty Units using Hydraulic-Based Sizing
2.7	3.2	units	# of Duty Units using Solids-Based Sizing
4		units	# of Duty Units-Selected (round up)
1		units	# of Standby Units
Cake Solids:			
23	22	% Solids	Cake Solids Concentration
57	57	lb/cu ft	Cake Density
Cake Productio	n:		
155,479	195,692	dry lb/d	
675,995	889,511	wet lb/d	
28,166	37,063	wet lb/hr	
439	578	cu yd/d	
494	650	cu ft/hr	
Cake Storage:			
2	2	days	Storage Capacity of Final Biosolids

- Define future target year
- Dewatering is different than headworks
- Average Annual versus Max Month or Max Day

Average	Maximum		
Annual in	30-Day in		
Start-up Year	Design Year	Units	Description
Biosolids Production:			
163,662	205,992	dry pounds/day	2045 Biosolids Production
3.6	3.4	% Solids	Feed Solids Concentration
Dewatering Equ	uipment Run T	imes:	
24	24	hr/d	
7	7	d/wk	
Dewatering Uni	its:		
140	160	gpm/unit	Hydraulic Loading
2,500	2,900	lbs/hr/unit	Solids Loading
2.7	3.0	units	# of Duty Units using Hydraulic-Based Sizing
2.7	3.2	units	# of Duty Units using Solids-Based Sizing
4		units	# of Duty Units-Selected (round up)
1		units	# of Standby Units
Cake Solids:			
23	22	% Solids	Cake Solids Concentration
57	57	lb/cu ft	Cake Density
Cake Productio	n:		
155,479	195,692	dry lb/d	
675,995	889,511	wet lb/d	
28,166	37,063	wet lb/hr	
439	578	cu yd/d	
494	650	cu ft/hr	
Cake Storage:			
2	2	days	Storage Capacity of Final Biosolids

Average	Maximum		
Annual in	30-Day in		
Start-up Year	Design Year	Units	Description
Biosolids Production:			
163,662	205,992	dry pounds/day	2045 Biosolids Production
3.6	3.4	% Solids	Feed Solids Concentration
Dewatering Equ	uipment Run T	imes:	
24	24	hr/d	
7	7	d/wk	
Dewatering Uni	its:		
140	160	gpm/unit	Hydraulic Loading
2,500	2,900	lbs/hr/unit	Solids Loading
2.7	3.0	units	# of Duty Units using Hydraulic-Based Sizing
2.7	3.2	units	# of Duty Units using Solids-Based Sizing
4		units	# of Duty Units-Selected (round up)
1		units	# of Standby Units
Cake Solids:			
23	22	% Solids	Cake Solids Concentration
57	57	lb/cu ft	Cake Density
Cake Productio	n:		
155,479	195,692	dry lb/d	
675,995	889,511	wet lb/d	
28,166	37,063	wet lb/hr	
439	578	cu yd/d	
494	650	cu ft/hr	
Cake Storage:			
2	2	days	Storage Capacity of Final Biosolids

- Consider start-up and future conditions
- Equipment and piping is not oversized
- Space for future units

Reliable solids projections need:

- Historical data
- Calibrated wastewater process model
- Coordination with planning staff for anticipated growth growth and service area.
- Consider future process changes

Sizing-2: Factors Affecting the Number of Units Needed

Operation Schedule has large cost impact

- 24/7
- 8 hrs/day; 4 days/week

Average	Maximum		
Annual in	30-Day in		
Start-up Year	Design Year	Units	Description
Biosolids Produ	ction:		
163,662	205,992	dry pounds/day	2045 Biosolids Production
3.6	3.4	% Solids	Feed Solids Concentration
Dewatering Equ	ipment Run T	imes:	
24	24	hr/d	
7	7	d/wk	
Dewatering Uni	ts:		
140	160	gpm/unit	Hydraulic Loading
2,500	2,900	lbs/hr/unit	Solids Loading
2.7	3.0	units	# of Duty Units using Hydraulic-Based Sizing
2.7	3.2	units	# of Duty Units using Solids-Based Sizing
4		units	# of Duty Units-Selected (round up)
1		units	# of Standby Units
Cake Solids:			
23	22	% Solids	Cake Solids Concentration
57	57	lb/cu ft	Cake Density
Cake Production	n:		
155,479	195,692	dry lb/d	
675,995	889,511	wet lb/d	
28,166	37,063	wet lb/hr	
439	578	cu yd/d	
494	650	cu ft/hr	
Cake Storage:			
2	2	days	Storage Capacity of Final Biosolids

Pre-Dewatering Storage:

- Reduces equipment size
- Handle unforeseen peaks
- Existing "wide spots" or new tanks.
- Consider cost/benefit of adding storage

Sizing-2: Factors Affecting the Number of Units Needed

Average	Maximum		
Annual in	30-Day in		
Start-up Year	Design Year	Units	Description
Biosolids Produ	ction:		
163,662	205,992	dry pounds/day	2045 Biosolids Production
3.6	3.4	% Solids	Feed Solids Concentration
Dewatering Equ	uipment Run T	imes:	
24	24	hr/d	
7	7	d/wk	
Dewatering Un	its:		
140	160	gpm/unit	Hydraulic Loading
2,500	2,900	lbs/hr/unit	Solids Loading
2.7	3.0	units	# of Duty Units using Hydraulic-Based Sizing
2.7	3.2	units	# of Duty Units using Solids-Based Sizing
4		units	# of Duty Units-Selected (round up)
1		units	# of Standby Units
Cake Solids:			
23	22	% Solids	Cake Solids Concentration
57	57	lb/cu ft	Cake Density
Cake Productio	n:		
155,479	195,692	dry lb/d	
675,995	889,511	wet lb/d	
28,166	37,063	wet lb/hr	
439	578	cu yd/d	
494	650	cu ft/hr	
Cake Storage:			
2	2	days	Storage Capacity of Final Biosolids

Solids vs Hydraulic Loading:

For dewatering, solids loading is typically limiting (different for thickening).

Sizing-3: Redundancy

Best practice includes redundant equipment to accommodate down time for maintenance and repairs.

		Average	Maximum			
		Annual in	30-Day in			
		Start-up Year	Design Year	Units	Description	
		Biosolids Produ	ction:			
		163,662	205,992	dry pounds/day	2045 Biosolids Production	
		3.6	3.4	% Solids	Feed Solids Concentration	
		Dewatering Equipment Run Times:			T 1 C 114 · ·	
		24	24	hr/d		Each facility is unique:
		7	7	d/wk		 Design for < "top speed"
		Dewatering Uni	ts:			
O 11 11	•	140	160	gpm/unit	Hydraulic Loading	• Staffing, maintenance,
Consider a standby i	init for	2,500	2,900	lbs/hr/unit	Solids Loading	and operation practices
every 1-5 duty units		2.7	3.0	units	# of Duty Units using Hydraulic-Based Sizing	
	•	2.7	3.2	units	# of Duty Units using Solids-Based Sizing	• Lead time for common
		4		units	# of Duty Units-Selected (round up)	spare parts and
		1		units	# of Standby Units	
# Deste a Line He			T - 4 -	1 44 1 1 !4		manufacturer repair
# Duty Units	# Stand	by Units	I Ota	al # Units	ke Solids Concentration	availability and location
				0	ke Density	
1	1			2		relative to the facility.
				•		• Dewatering feed
5	1			6		
				•		storage.
6	2			8		
9	2			11		
				4.0	rage Capacity of Final Biosolids	
10	3			13		

Sizing-4: Cake Storage

- Wide spot between dewatering and end use.
- Impacts equipment operation schedule

May be necessary for:

- The type of end use contract
- Backup/emergency plans

Δνοτασο	Maximum		
Annual in	30-Day in		
Start-un Vear	Design Vear	Units	Description
Biosolids Produ	ction:		
163 662	205 992	dry nounds/day	2045 Biosolids Production
3.6	3.4	% Solids	Eeed Solids Concentration
Dewatering Fou	j <u> </u>	imes:	
24	24	hr/d	
7	7	d/wk	
Dewatering Uni	its:		
140	160	gpm/unit	Hydraulic Loading
2.500	2.900	lbs/hr/unit	Solids Loading
2.7	3.0	units	# of Duty Units using Hydraulic-Based Sizing
2.7	3.2	units	# of Duty Units using Solids-Based Sizing
4		units	# of Duty Units-Selected (round up)
1	1		# of Standby Units
Cake Solids:			
23	22	% Solids	Cake Solids Concentration
57	57	lb/cu ft	Cake Density
Cake Productio	n:	, ,	
155,479	195,692	dry lb/d	
675,995	889,511	wet lb/d	
28,166	37,063	wet lb/hr	
439	578	cu yd/d	
494	650	cu ft/hr	
Cake Storage:			
2	2	davs	Storage Capacity of Final Biosolids

Equipment and Technology

Type of Dewatering Equipment

- Centrifuge
 - Minimal odor, housekeeping, operator attention, footprint
 - High speed/energy consumption and sophisticated major maintenance
- BFP
 - Simple operation and lots of operator control
 - Requires washwater
 - Needs enclosures for odor containment
- Screw press
 - Low power requirements
 - Lower hydraulic capacity (more units required → larger footprint)
- Hydraulic piston press
 - High solids cake concentration
- 13 Limited experience

Evaluate Elements of the Polymer System for the Cost Effectiveness of Optimization

- 2. Aging of Polymer Solution
- 3. Effective Solids/Polymer Blending
- 4. Dilution and Feed System:
 - a) Allows polymer feed solution in the optimal range
 - b) Provides multiple feed solution and dilution application points for flexibility
 - c) Mitigate loss of effectiveness due to poor dilution water quality
- 5. Strategic automation to optimize dewatering performance

То

Level of Automation

Level of Automation

Cake Transport Options

- Each has appropriate applications, advantages, disadvantages, and maintenance considerations
- Screw Conveyors
 - Shafted
 - Shaftless
 - Vertical shaftless
- Belt Conveyors
 - Troughed
 - Cleated
- Cake Pumps
 - Progressing Cavity Bridge-Breaker
 - Hydraulically-Actuated Piston

Odor Control

Considerations:

- Define your goals: Staff safety onsite, neighbor complaints offsite
- Limit amount of staff operation time in direct contact with equipment
 - Type of equipment
 - Level of automation, including cameras
- Type of equipment:
 - Already enclosed: Centrifuges, Screw Presses, Hydraulic Piston Presses
 - BFPs:
 - Can increase air changes per hour if desired
 - Can enclose with hinged hoods over gravity zone
 - Can also enclose with removable panels on sides

Layout Considerations

Designers need to think like operators to consider operator access and safety

- Operator-friendly layout
 - Access around drives and motors
 - Overhead crane for easy removal of major equipment for repair
 - Laydown space for removal of major equipment items
 - Good ventilation
 - Low noise with acoustic wall panels if necessary
 - Great lighting

Storage and Loadout

- Cake hoppers or direct to trucks/pad
- Automatic truck loading systems
 - Discharge rates can be controlled
 - Fill trucks in 5 to 20-minutes
 - Precision truck loading system
 - Load cells/level sensors
 - Proven controls
 - Within 200 pounds of set weight
 - Multiple discharge points per truck → no need to relocate truck to load
 - Truck drivers can operate
 - Minimal housekeeping

Building Considerations

Traditional Layout Requires Conveyance of Cake from Dewatering Units to Cake Storage

Building Considerations

When feasible, a 3-story concept provides low O&M costs and easy truck loading

- Advantages:
 - Cake drops by gravity to storage silo/bin/hopper then to trucks
 - Less energy cost
 - More simple maintenance (least cake conveyance)
 - Smaller footprint
- Disadvantages:
 - Tall building
 - Up front capital cost

- Other considerations:
 - Operator viewing
 - Hoistways for major equipment
 - Best for polymer storage and feed equipment to be on ground level for easiest delivery _{©Jacobs 2023}

Decision Process

Tools that Can Help Support Decisions

- Sizing Decisions:
 - Flow/load projections
 - Design Condition
 - Level of redundancy
- Equipment and Technology:
 - Dewatering equipment
 - Polymer system
 - Type of conveyance
 - Level of automation
 - Odor Control

• Layout Considerations:

- Safety/operator access
- Storage
- Truck scales/loadout
- Building considerations

- Data analysis—Appropriate elimination of outliers
- Risk analysis—Evaluate the likelihood of encountering specific scenarios
- Sensitivity analysis—Determine whether the outcome changes if specific criteria were to be weighed differently
- Traditional project delivery, lowest bid—Design around the largest sized equipment
- Equipment pre-selection—Bid process with manufacturers, can include monetary and non-monetary criteria
- Cost/benefit models/analyses:
 - Define mutually exclusive criteria
 - Establish weighting factors based on collective head-tohead or average of individual staff evaluation
 - Compare benefit score to capital and/or life cycle cost
 - Can include consequence evaluation—define best and worst feasible outcomes for alternatives

Questions/Comments?

Challenging today. Reinventing tomorrow.

Key Decisions in Dewatering Facility Design

September 22, 2023

Matt Berg, PE

