

in partnership with

Construction in Tight Spaces: Oso WRP Headworks and Lift Stations Project TACWA Meeting

January 31, 2020

Logan Burton, P.E., Project Manager (LNV) Kate Nartey-Quaye, P.E., Project Engineer(LNV)

Today's Agenda

- Background
- Project Drivers and Objectives
- Overall Site Plan
- Construction Activities
- Construction Challenges, Issues and Solutions

Today's Objective

 Discuss construction phase activities of the Oso WRP LS and HWs project

Present key construction challenges and solutions

• Lessons learned

Oso WRP Background

- Constructed in 1941
- Five major plant upgrades since
- Capacity
 - 16.2 MGD ADF
 - 98 MGD PF
- Largest WWTP in Corpus Christi

Oso WRP Site

- TCEQ Buffer zone
- Limited available space available for new facilities

Project Drivers

- Facilities in very poor condition
 - Equipment failures & emergency repairs
 - Tedious O&M
 - Wet weather capacity concerns
 - Grit removal and odor control system not functional
- Operator safety
- Very limited access

Overall Site Layout

New Influent Lift Station

- All below ground
- 39' Diameter
- 35' Deep

New Headworks

- All above ground on 104 piers (55' Depth)
- 90' Width x 85' Long x 30' High

21

HEADWORKS SECTION

ΗŻ

New Odor Control Facility

Construction Challenges, Issues and Solutions

Existing Utilities & Structures

Challenges

- "Spaghetti works" of underground pipes In-service and abandoned
- Abandoned underground structures
- Overhead power lines and underground duct bank
- Existing headworks and lift station

Solutions

- Hydro excavation
- Detailed utility relocation plan with sequencing
- Construction allowance to address unknowns/unanticipated issues quickly

Existing Underground Utilities

Detailed Utility Relocation Plan

Superimposed proposed plan on existing site

Removal of Unanticipated Buried Structures

Challenge

- Many benefits to FRP pipe but is more suitable for "greenfield projects"
 - Difficulty in field routing due to custom designed fittings
 - Less flexibility to avoid unanticipated conflicts

Challenge

 Be sure to provide temporary drainage during construction

 Be sure drainage inlets aren't demolished out of sequence

New Wet Well Structure

Challenge

- Space constraints for excavation of new wet well structure
- Dewatering / Well pointing

- Adopted caisson method
 - Concrete is placed above ground in lifts and sunk
 - Reduced excavation footprint and quantity of soils stored/hauled
 - Reduced dewatering footprint

New Wet Well Structure Construction

48-inch Equalization Line

- RCP installed in 1954, 17' deep
- Risk of excavating adjacent & parallel
- Site accessibility would be limited further
- Conflicts with fencing and other UG utilities

48-inch Equalization Line

Alternate Solution

- Trenchless (CIPP)
- Restores structural integrity
- Reduced excavation and risk
- Time saving
- Cost savings

Generators and Subbase Fuel Tanks

GENERATOR #1

Challenge

 Relocation of 2 existing generators and four (4) free standing fuel tanks

Alternate Solution

- Generators with subbase fuel tanks
- Reduced footprint
- User friendly layout

Site Staging Areas

Challenges

- Decongest
 Construction Zone
- Avoid construction traffic conflicts with plant traffic

Solutions

 Dedicate multiple staging areas of appropriate size

Stepped Approach To Construction

Challenges

- Maintain plant capacity
- Space constraints for equipment movement
- Start up new facilities prior to decommissioning old facilities

Solutions

- Detailed sequencing plan
- Bypass pumping strategy to remain operational at all times

Step 1– Construct HWs Piers, HW and LS

Step 2 – ECR Piers, Bldg and Cable Trays

Step 3 – Yard Piping

Step 4 – Bypass Pumping

Step 5 – Demo LS and Install OC Unit

Questions?

Thanks To Our Partners

City of Corpus Christi Utilities

Daniel Deng Gerald Garcia Earl Richardson Freddy DeLeon

Operational Constraints

Challenge

- WRP to remain operational at all times
- Always comply with all applicable TCEQ and federal regulations at all times

Solution

- Understand the major components of proposed units and tie-ins
- Know your team contact numbers, backups for key personnel
- Communications on all levels is the key
- Detailed sequencing

Design Challenges

- Limited space on site
- Oso WRP to be functional at all times
- Existing underground utilities
- Construction sequencing
- EQ line rehabilitation
- Providing redundancy for each unit

Headworks- Existing Conditions

- Slide Gates
 - Inoperable & no isolation capability

- Aerated Grit Basin
 - Out of service for 20+ years
 - High maintenance due to pipes clogging and corroding

Photos of Existing Headworks

Photos of Existing Headworks

