BUILDING A
OF
DIFFERENCE

Process Optimization — A New Eric Redmond

Approach with Old Infrastructure

BUILDING A WORLD OF DIFFERENCE"
iz E BLACK&VEATCH




Facility Challenges

e |Increasing Effluent Quality
NH4 < 2.0 mg N/L
TP < 0.5 mg P/L
Total Nitrogen < 10 mg N/L
BOD < 5.0 mg/L

 BNR Facilities -> Increased O&M
Energy Demand
Chemicals
Space
Instrumentation

e Aeration Energy at BNR Facilities
30-60% of total energy consumption
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Figure 1-1. U.S. Water and Wastewater Utility Energy Costs
(USD Millions).

WERF — Guide to Net-Zero Energy Solutions for Water Resource Recovery Facilities

Can you have optimum treatment
performance AND lower O&M requirement?




WERF — Guide to Net-Zero Energy Solutions for WRRFs

e Best Practices — 40% lower energy consumption compared to “typical”
performance

e Improved primary treatment, thickening, and dewatering most significant
positive impact

More concentrated energy available for recovery
Less secondary capacity required for BOD, TSS, TKN

e Significant energy savings with reduced fouling of diffusers

e Digestion with CHP most advantageous for recovery
Co-digestion significant gains in recovery

e Odor control — significant energy requirements

e Low DO w/ SND achieved 80% energy neutrality at MBR facilities
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Fine Tuning Aeration to Provide Energy Savings....anything else?
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Fig. 11. Estimated energy use reductions at the Nine Springs WWTP for 8 different DO

scenarios.
Water Research; Keene et al., 2017

Can we operate with DO concentrations of 0.3-1.5 mg/L? . E




History of Activated Sludge and Aeration
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Aeration control provides increased process performance and management of energy




Historical Aeration Approach

e Complete Stirred Tank Reactors (CSTR)
Maintain consistent tank concentrations
Microbial populations not exposed to substrate gradients

e High SVIs (>300) commonly observed
o “..fully aerobic reactor DO > 2.0 mg/L”

TABLE III. Combinations of COD removal rate and aeration basin dissolved oxygen concentration where bulking and
nonbulking sludges occur (completely mixed systems).

CcCOD
Removal
Rate, ¢
(g COD Aeration Basin Bulk DO
removed/ (mg/l)
kg - —
Vvss/d)  0.1-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0 5.0-5.5 5.5-6.0

0.20-0.30 No bulking

0.35-0.45 Bulking No bulking

0.45-0.55 Bulking No bulking

0.50-0.60 Bulking No bulking

0.60-0.70 Bulking No bulking

0.75-0.85 Bulking No bulking

0.80-0.90 Bulking No bulking

0.95-1.05 Bulking No bulking

1.05-1.15 \ Bulking No bulking

1.40-1.50 : Bulking No bulking
1.50-1.60 Bulking No bulking

1.60-1.70 Palm et aI., 1980 Bulking No bulking




Concentration course

Type time space
° ‘]40J tcA Ya ‘LL}"--—'—". —————— 1=0
Reactor Design Improvements @ \\
Q ~ | tlof2
Ae+ ’e:/? Wi &; Aef———===m=— ;:..-- 1=te
e Plug Flow Reactors | s S & A«'\\
e Introduction of Bioselectors (1970s) E£ 9 mssinde] BPA | i
S t— ? 17—
R 3 o ol 19
1 r = % Cae — Ye =
A 0
Q X b X /
/
RAS

1962 THE LUDZACK — ETTINGER NDN PROCESS

Poor settling sludge led to reactor improvements — nutrient removal was not initial driver
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What effect does reactor configuration
have on activated sludge settling?

e Most significant impacts to bulking
sludge

High F/M gradients in a plug flow reactor
Anaerobic/Anoxic Zones (Bioselectors)
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SVI, ml g

What effect did this have on actual settling SVIs?
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Nitrification kinetics historically drive design and operational decisions

D.O. N Reaction A D.O. A : Reaction =2

e Reactor design — optimize
growth rate

Nitrifiers slowest growth rate
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What about denitrification?

e Traditionally carried out in a
step-wise fashion with distinct
zones and pumping

e Can we take advantage of
denitrification?

2.85 mg 0,/mg N

OR 2.85 mg BOD to remove 1
mg of N
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Low DO Nitrification - Promoting Simultaneous
Nitrification/Denitrification
0.12-

e Historical approach — DO > 2.0 mg/L > 2 .
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Water Research; Keene et al., 2017
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Traditional Enhanced Biological Phosphorus Removal

Recirculation of NOj-
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Enhanced Biological Phosphorus Removal

e Multiple studies and full-scale

experiences > 04 .
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Implementation Considerations — Solids Retention Time (SRT)
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Determine Risk — Dynamic Diurnal Simulations
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Instrumentation Considerations

e DO Probes
Placement
Maintenance
* NH4/NO3 Probes
Monitor performance
Potential to incorporate into control scheme (ABAC or AvN)
e TSS Probe
Accurate SRT control
* ORP Probe

Monitor anoxic and anaerobic zones




Two Case Studies

e Wakarusa River WWTP (Kansas)

e Denver North Treatment Plant




Case Study — Wakarusa River WWTP

e 2.5 mgd facility

 BNR facility
achieving TP and TN
removals

e Two Aerated Zones
Zone 4 - 0.8 mg/L
Zone 9 - 0.6 mg/L




Aeration Control

‘Zone #4 DO

‘Zone #9 DO ‘

Aerators

Eff NO3,
NH3 and OP




Case Study - Wakarusa
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Case Study - Wakarusa

e OQutcome
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Case Study — Denver North
Treatment Plant

e 5 mgd AADF
10 mg/L effluent NO3 (daily max)
1 mg/L TP (95 percentile)

e Startup 2016
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e Operating at low DO conditions
throughout basins

e Step Feed Facility




A modeling based approach — startup guidance
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Predicted effluent nitrogen species
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CONC (mg/L)

A modeling based approach — would higher DOs improve performance?
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Predicted effluent nitrogen species

CONC (mgN/L)
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Denver North Treatment Plant — Results and Experience

e Continued low DO operation - > 2 years since startup

e Meeting effluent requirements
ABAC controls implemented to control during high loading periods

e Solids settling SVI is poor
Common characteristic of step feed facilities — low F/M ratios




Implementation Considerations

e Plan, Do, Check, Act
e Instrumentation
e SRT

e Patience




Questions?

Eric Redmond
redmonde@bv.com
(469) 513-3252

BUILDING A WORLD OF DIFFERENCE®
iz E BLACK&VEATCH


mailto:redmonde@bv.com

