BUILDING A WORLD OF DIFFERENCE

Process Optimization – A New Approach with Old Infrastructure

Eric Redmond

BUILDING A WORLD OF DIFFERENCE*

Facility Challenges

- Increasing Effluent Quality
 - NH4 < 2.0 mg N/L
 - TP < 0.5 mg P/L
 - Total Nitrogen < 10 mg N/L
 - BOD < 5.0 mg/L
- BNR Facilities -> Increased O&M
 - Energy Demand
 - Chemicals
 - Space
 - Instrumentation
- Aeration Energy at BNR Facilities
 - 30-60% of total energy consumption

Figure 1-1. U.S. Water and Wastewater Utility Energy Costs (USD Millions).

WERF – Guide to Net-Zero Energy Solutions for Water Resource Recovery Facilities

Can you have optimum treatment performance AND lower O&M requirement?

R,

WERF – Guide to Net-Zero Energy Solutions for WRRFs

- Best Practices 40% lower energy consumption compared to "typical" performance
- Improved primary treatment, thickening, and dewatering most significant positive impact
 - More concentrated energy available for recovery
 - Less secondary capacity required for BOD, TSS, TKN
- Significant energy savings with reduced fouling of diffusers
- Digestion with CHP most advantageous for recovery
 - Co-digestion significant gains in recovery
- Odor control significant energy requirements
- Low DO w/ SND achieved 80% energy neutrality at MBR facilities

Fine Tuning Aeration to Provide Energy Savings....anything else?

- Simultaneous nitrification/denitrification (SND)
 - Recover alkalinity
 - Beneficial carbon removal
- Over-aerating can cause poor settling – DO >> 3 mg/L
 - Floc breakup and pin floc
- Internal recycle flows
 - Low DO to anoxic zones

Fig. 11. Estimated energy use reductions at the Nine Springs WWTP for 8 different DO scenarios. Water Research: Keene et al., 2017

Can we operate with DO concentrations of 0.3-1.5 mg/L?

Aeration control provides increased process performance and management of energy

Historical Aeration Approach

- Complete Stirred Tank Reactors (CSTR)
 - Maintain consistent tank concentrations
 - Microbial populations not exposed to substrate gradients
- High SVIs (>300) commonly observed
- "...fully aerobic reactor DO > 2.0 mg/L"

COD

TABLE III. Combinations of COD removal rate and aeration basin dissolved oxygen concentration where bulking and nonbulking sludges occur (completely mixed systems).

Removal Rate, q (g COD removed/ kg VSS/d)	Aeration Basin Bulk DO (mg/l)											
	0.1-0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-3.0	3.0-3.5	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0
0.20-0.30	No bulking	l Anna an an ann an an an										
0.35-0.45	Bulking	No bulking	M. L. D.									
0.45-0.55		Bulking	Bulking	No bulking								
0.60-0.70			Durking	Bulking	No bulking							
0.75-0.85					Bulking	No bulking						
0.80-0.90						Bulking	No bulking					
0.95-1.05							Bulking	No bulking	NT 1 11 1			
1.05-1.15								Bulking	No bulking	Na hulldan		
1.40-1.50									Buiking	No buiking	No bullding	
1.50-1.60										Buiking	Bulking	No bulking
1.60-1.70					Palm et	al., 1980					Durking	THO DUIKING

Poor settling sludge led to reactor improvements – nutrient removal was not initial driver

What effect does reactor configuration have on activated sludge settling?

- Most significant impacts to bulking sludge
 - High F/M gradients in a plug flow reactor
 - Anaerobic/Anoxic Zones (Bioselectors)

Tay et al (2004) Journal of Environmental Engineering **130**(10)

Obtain Feast and Famine Periods within Activated Sludge Process

q_s is controlled by micro-organism

Decreasing bulk liquid substrate concentration q_s is limited by substrate addition rate

Martins et al., 2003

What effect did this have on actual settling SVIs?

Koller et al., 1966

Nitrification kinetics historically drive design and operational decisions

- Reactor design optimize growth rate
 - Nitrifiers slowest growth rate
- Growth rate of early studies
 - AOB DO > 2.0 mg/L
 - NOB DO as high as 4.0 mg/L

What about denitrification?

- Traditionally carried out in a step-wise fashion with distinct zones and pumping
- Can we take advantage of denitrification?
 - 2.85 mg O₂/mg N
 - OR 2.85 mg BOD to remove 1 mg of N

Low DO Nitrification - Promoting Simultaneous Nitrification/Denitrification

- Historical approach DO > 2.0 mg/L
 - AOB/NOB population kinetics thought to be optimized at higher DO concentrations
- Recent work shows low DO nitrification is possible and kinetics are similar to those at higher DO concentrations

Low DO to promote SND – optimized energy and carbon usage

Traditional Enhanced Biological Phosphorus Removal

Enhanced Biological Phosphorus Removal

- Multiple studies and full-scale experiences
 - Lower DO led to improved Bio-P
 - PAO organisms have high DO affinity
- DPAOs
 - Ability to use NO₃/NO₂ as electron acceptor in lieu of O₂

Implementation Considerations – Solids Retention Time (SRT)

Determine Risk – Dynamic Diurnal Simulations

Instrumentation Considerations

- DO Probes
 - Placement
 - Maintenance
- NH4/NO3 Probes
 - Monitor performance
 - Potential to incorporate into control scheme (ABAC or AvN)
- TSS Probe
 - Accurate SRT control
- ORP Probe
 - Monitor anoxic and anaerobic zones

Two Case Studies

- Wakarusa River WWTP (Kansas)
- Denver North Treatment Plant

Case Study – Wakarusa River WWTP

- 2.5 mgd facility
- BNR facility achieving TP and TN removals
- Two Aerated Zones
 - Zone 4 0.8 mg/L
 - Zone 9 0.6 mg/L

Case Study - Wakarusa

Zone #9DO

Case Study - Wakarusa

• Outcome

Effluent Ortho P

Case Study – Denver North Treatment Plant

- 5 mgd AADF
 - 10 mg/L effluent NO3 (daily max)
 - 1 mg/L TP (95th percentile)
- Startup 2016
- Operating at low DO conditions throughout basins
- Step Feed Facility

A modeling based approach – startup guidance

Predicted effluent nitrogen species

A modeling based approach – would higher DOs improve performance?

Predicted effluent nitrogen species

Denver North Treatment Plant – Results and Experience

- Continued low DO operation > 2 years since startup
- Meeting effluent requirements
 - ABAC controls implemented to control during high loading periods
- Solids settling SVI is poor
 - Common characteristic of step feed facilities low F/M ratios

Implementation Considerations

- Plan, Do, Check, Act
- Instrumentation
- SRT
- Patience

Questions?

Eric Redmond redmonde@bv.com (469) 513-3252

