

North Texas Municipal Water District Overview

UEFIS Largest of Multiple NTMWD WW Service Areas

UEFIS Regional WWTPs Approaching **Permitted Capacity**

Current

Permitted

- Wilson Creek RWWTP Capacity
 - » 56 mgd annual average daily flow (AADF)
 - » Expanding to 64 mgd AADF
 - » TCEQ permit up to 64 mgd AADF
- Rowlett Creek RWWTP
 - » 24 mgd AADF

Combined future RWWTP capacity of 88 mgd AADF

Rapid Wastewater Flow Growth Projected

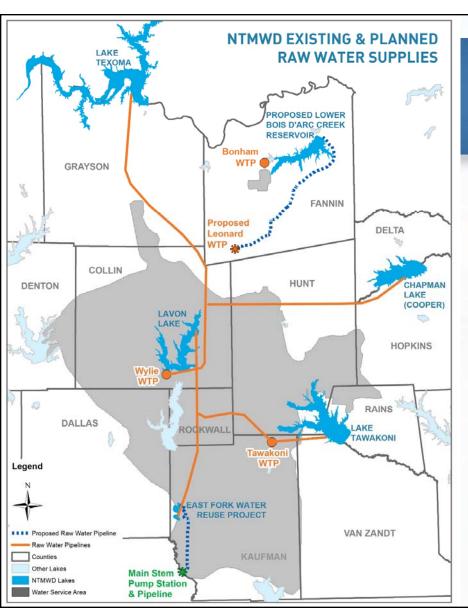
- Population of UEFIS projected to almost double by 2040
 - » ~600,000 to ~1.1 M
 - » Flows increasing quickly
- Growth concentrated in northern/eastern areas of UEFIS
 - » Served by Wilson Creek RWWTP
- Amended TCEQ discharge permit required for expansion beyond 64 mgd or new permit for new plant

Rapid Wastewater Flow Growth Projected

- Population of UEFIS projected to almost double by 2040
 - » ~600,000 to ~1.1 M
 - » Flows increasing quickly
- Growth concentrated in northern/eastern areas of UEFIS
 - » Served by Wilson Creek RWWTP
- Amended TCEQ discharge permit required for expansion beyond 64 mgd or new permit for new plant

Project Objective – Plan to meet 50-year UEFIS Regional WWTP Capacity Needs

- Accommodate Growth:
 - » From 600,000 to 1M customers by 2040 in the UEFIS
 - » Addition of future customers
- Maintain Lavon Lake water quality
 - » Meet future regulatory requirements
- Consider Biosolids
 Processing, Conveyance,
 Treatment implications on overall alternative capital/life cycle costs.



The Regional WWTP Conceptual Design to guide best value decisions for a "future proof" long-term strategy and an "actionable" short-term implementation plan.

Conceptual Design Study to Determine Path Forward to Address Capacity Needs

- Expand Wilson Creek RWWTP existing permitted discharge location
- Expand Wilson Creek RWWTP secondary permitted discharge location, Sister Grove arm
- Design new RWWTP Sister Grove arm discharge location

Existing and Planned Raw Water Supplies – Multiple Sources into Lavon Lake

Existing:

- Lavon Lake
- Lake Texoma
- Lake Tawakoni
- Chapman Lake
- Reuse/Wetland

Proposed:

Lower Bois d'Arc
 Creek Reservoir

_

Project Study Area

VoyageTM model leverages various model inputs for system assessment

NTMWD VoyageTM Model

- Customer Flows
- Collection & Transmission
 - » Gravity Sewers
 - » Force Mains
 - » Pump Stations
- Treatment
 - » Wilson Creek RWWTP
 - » Advanced Treatment
 - » New Water Resource Recovery Facility (WRRF)
- Lavon Lake water quality impacts on permitting/treatment requirements
- Biosolids processing facility impacts
- Capital/O&M costs

Tiered decision process to facilitate comprehensive evaluation of RWWTP Conceptual Design options

- Projected Flows Current and Potential Future Customers (NTMWD)
- Discharge Location
- Current and Potential Future Water Quality Standards/ Discharge Permit Requirements (APAI)
- ◆ Treatment Technologies and Locations
- Biosolids Processing Technologies and Locations
- Non-cost criteria

50-year planning horizon requires "Future-proof" planning methodology

- Scenario Planning method of planning to evaluate a spectrum of future conditions, considering risk.
- ◆ Scenario Unique combination of future conditions that must be met
- How do we identify the driving future conditions (scenarios) to be considered?

Step 1 – Identifying Project Drivers

<u>Driving forces</u> - external social, technological, environmental, economic, political and legal (STEEPL) trends likely to influence the strategy selected to meet the project objective.

- ◆ Population and economic growth
- Peaking factors in wastewater flow rates
- Per-capita wastewater flows
- Public support for facilities or projects
- Existing infrastructure nearing capacity
- Changing economic factors affecting future costs
- Increased cooperation with Member/Customer communities
- ◆ Lavon Lake water quality and effects on future permit requirements

Risk Mapping of Key Uncertainties Identifies Primary Drivers/Defines Scenario Matrix

Population and Customer Scenarios

Key Constituents for Permitting and Water Quality Management

- Dissolved Oxygen
 - » BOD
 - » NH3
- ♦ Chlorophyll-a
 - » Total Phosphorus
- **♦** TDS

Regulatory Condition Scenarios

- Primary goal of protecting Lavon Lake Water Quality
- ◆ Phosphorus assumed as proxy limiting parameter by which suitability of treatment technologies for meeting potential for meeting future permit limits is assessed.

Treatment Approaches

Conventional BNR + Tertiary Polishing

Membrane Bioreactor

- A representative technology was selected for achieving each treatment objective for screening analysis others are available
- P2HF:AADF ratio of 4.0
- EPA Class 1 reliability requirements
- Upgrade for Wilson Creek assumes addition of tertiary polishing for full plant flow, reusing existing filters

Scenario Matrix for 50-year Planning Assessment

<u>Scenario 2 – Medium Population, Less</u> Conservative P Limit

- Tier 1 and Tier 2 w/ medium projections
 - Projected 1.78 million people served
- Technology driven by use of tertiary clarification and filters

Scenario 1 – High Population, Conservative Effluent P Limit

- All Tiers w/ high projections
 - Projected 2.26 million people served
- Technology driven by use of membranes

<u>Scenario 4 – Low Population, Less Conservative</u> <u>P Limit</u>

- Existing Cities
 - Projected 1.3 million people served
- Technology driven by use of tertiary clarification and filters

<u>Scenario 3 – Medium Population, Conservative</u> <u>Effluent P Limit</u>

- Tier 1 w/ medium projections
 - Projected 1.61 million people served
- Technology driven by use of membranes

Biosolids Considerations

- Two major treatment alternatives considered against all scenario conditions:
 - » Advanced digestion
 - » Dewatering/landfilling
- Alternatives considered:
 - » Sludge processed on-site (Wilson Creek, Rowlett Creek, New WRRF (if applicable))
 - » Sludge processed at Regional Facility
 - Takes into account transfers of solids between plants (solids pipelines/pumping)
- Updated capital/O&M costs from 2013 Biosolids Master Plan (power, polymer, trucking)

Alternative Assessment

- Assessed 29 total individual alternatives for each year of the planning horizon and for each of the 4 planning scenarios
 - —4 Major WWTPSite/Discharge OptionsConsidered
 - ─3 Discharge locations
 - —4 Biosolids Processing Alternative Elements
- Voyage model used in assessment and generated life cycle costs (LCC)

General WRRF Considerations and Non-Cost Criteria

- Non-cost criteria combined with alternative cost results to determine best-value solutions
- Non-cost criteria considered:
 - Flexibility to meet future regulatory and population requirements
 - 2. Operational flexibility
 - 3. Watershed protection
 - 4. Community impact
 - 5. Facilitates resource recovery (energy and nutrients)

Benefit-cost analysis identifies best balance of monetary and non-monetary criteria

Best Performing Alternatives, 250 Total System Life Cycle Cost Only

- Wilson Creek
 Expansion/Existing
 Discharge alternatives least expensive
- Followed closely by alternatives at Greenfield site "B"

Top-Performing Alternatives – Benefit-Cost Scores

Scenario 1, 2070

Scenario 2, 2070

Top-Performing Alternatives – All Scenarios

◆ Top-performing alternatives across full range of future conditions considered (scenarios):

Alternative	Plant Location/Solids Processing
16B	New WRRF Site B /Landfill from site generation
19B	76 MGD to WC WWTP, remainder to New WRRF Site B/Landfill from site generation
9A	New WRRF Site A/Landfill from site generation
20B	76 MGD to WC WWTP, remainder to New WRRF Site B/ WC offsite dewatering with landfill, remainder landfill from site generation

Wilson Creek RWWTP Expansion(s)

(not recommended)

- ◆ Lake water quality modeling indicates 76 mgd is possible, but not at existing permit limits
 - » additional process improvement likely required to reliably meet DO standard
 - » % blend/mixing in East Fork Arm
- Full Expansion to meet 2070 projection, all Tiers, high growth additional 120 mgd
 - » not feasible long-term due to water quality, land needs, community concerns; relocated discharge cost prohibitive
- Projections with new customers indicate potential for near simultaneous partial expansion/new WWTP permitting/implementation

Alternatives Recommended for Further Evaluation/Current Status

- ◆ Top 2 alternatives
 - » Site A
 - » Site B
- NTMWD in property acquisition phase
 - » Some conceptual design comparison of alternatives to facilitate acquisition
 - —Conceptual costs
 - —Layouts
 - —Land acquisition requirements
- Additional WQ modeling (creek, lake)
- Complete conceptual design study report following site selection/WQ modeling
- Meet with TCEQ/USACE to vet findings/approach
- NTMWD preparing permit application

